SPECIFICATION

MENTION INDEX

1.	Applicable safety standard	1.
2.	Acquired Safety Standards approval	1.
3.	Part Number	1.
4.	Marking	6.
5.	Rating and Characteristics	7.
6.	Specifications and Test Methods	8.
7.	Characteristics Data	12.
8.	Taping specification	14.
9.	Packaging Styles	16.
10.	Packaging Quantity	17.
11.	Label and Transport	17.
12.	Notification before the modification	17.

DIVISTION	DATE ISSUED	SPEC.NO.
TECH.DERT	May.3.2012	WM-S08-008B06

HM TYPE -FOR(Reinforced Insulation)-IEC60384-14-ClassX1,Y2

1. Applicable Safety Standard

This specification applies to the VDE, CQC, UL ,CSA ,EC and JET approved ceramic capacitors dist type for antenna-coupling, line-by-pass and across-the-line. And approved by VDE ,CQC for IEC-384-14- second edition1993/EN 132400

2. Acquired Safety Standard Approval and Recognized number

Safety Standard	Standard No.	Recognition No.	Rated Voltage
VDE-ENEC	DIN EN60384-14(VDE 0565 Teil1-1):2006-04; EN60384-14:2005-08; IEC60384-14(ed.3)	40034436	
UL	UL60384-14	E221839	X1:400V~
CQC	GB/T14472-1998	CQC09001040206	Y2:25UV~
CSA	CSA-E60384-14:09	1226874	
КС	K60384-14	SU03040-8001/2A	
JET	J60384-14(JISC5101-14)	1417-C9901-022	

3. Part Numbers

Examples	HM	<u> </u>	103	_M_	G	_4_	B	W
	(1)	2	3	(4)	(5)	6	$\overline{(7)}$	8

- ① Type
- ② Temperature Characteristics
- ③ Nominal Capacitance
- (4) Capacitance Tolerance Symbol
- (5) Lead Style
- ⑥ Lead Spacing
- ⑦ Packaging
- ⑧ Internal code

3.1 Type

Type Designation

Code	Sefety Sandard Recogized Type		
HM	X1: AC400V, Y2:AC250V		

Code	Temperature Characeristics	Cap.Change Of Temp.coeff.	Temperature Range
S	SL	+350~-1000ppm/°C	
В	Y5P	±10%	-25 to 85℃
E	Y5U	+20%~-55%	-20100000
F	Y5V	+30%~-80%	

3.2 Temperature Characiteristics Code

3.3 Nominal Capacitance Code

Nominal capactiance shall consist of three numerals in the unit of picofarad(Pf). The first and second numerals mean the significant figures, and the third numeral shall represent the number of zeros fllowing the significant figures.

Example:

Code	Capacitance(pF)
101	100
102	1000
222	2200
103	10000

3.4 Capacitance Tolerance

Code	Tolerance
К	±10%
М	±20%

3.5 Lead style

3.5.1: Straight long lead (Lead Style Code : A)

T max

Lead code	A2	A3	A4
F	5	7.5	10
L		20 min	
d		0.55	
е		4.0 Max	•

3.5.2 : Straight short lead (Lead Style Code : B)

Lead code	B2	B3	B4
F	5	7.5	10
L	5 or depend on client		client
d	0.55		
е		4.0 Max.	

3.5.3 : Inside Crimped Short lead (Lead Style Code : C)

Lead code	C2	C3	C4
F	5	7.5	10
A0	5	5	6.5
L	5 or depend on client		
d	0.55		

3.5.4 : Inside crimped long lead (Lead Style Code : D)

Lead code	D2	D3	D4
F	5	7.5	10
A0	5	5	6.5
L	20 min		
d	0.55		

3.5.5 : Outside crimped Shart lead (Lead Style Code: E)

Lead code	E2	E3	E4	
F	5	7.5	10	
A0	5	5	6.5	
L	5 or depend on client			
d	0.55			

3.5.6 : Outside crimped long lead (Lead Style Code: F)

Lead code	F2	F3	F4	
F	5	7.5	10	
A0	5	5	6.5	
L	20 min			
d	0.55			

3.5.7 : Vertical crimped long lead (Lead Style Code: G)

Lead code	G2	G3	G4
F	5	7.5	10
L	20 min		
d	0.55		

3.5.8 : Vertical crimped short lead (Lead Style Code: H)

Lead code	H2	H3	H4	
F	5	7.5	10	
L	5 or depend on client			
d	0.55			

3.5.9 : Duoble crimped snap lead, (Lead Style Code: M)

Lead code	M2	М3	M4	
F	5	7.5	10	
Н	2.6	2.6	3.3	
P1	1.25	1.25	1.65	
P2	1.65	1.65	1.95	
А	D<8:6.0±1.5, D>8:7.0±1.5			
L	3 to 30 mm			
d	0.55			

General Information: PCB max. thickness 1.6mm

3.6 Lead Spacing Code

Code	Lead Spacing(mm)
2	5.0 ± 1.0
3	7.5±1.0
4	10.0±1.0

3.7 Packaging Code

Code	Pitch of components(mm)	Packaging
В	/	Bulk
А	12.7	
С	25.4	Taping Ammo Pack
D	15.0	
E	30.0	
R	12.7	Taping Reel Pack

3.8 Internal Code

Code	Meaning
W	Meeting RoSH
L	Halogen-Free & Meeting RoSH

- 4. MARKING
- (1) Type Designation : HM
- (2) Nominal Capacitance : (Marked With 3 figures) ex: 222 = 2200pF
- (3) Capacitanve tolerance: K: \pm 10%, M: \pm 20%
- (4) Subclass and rated voltage: X1:400V~ , Y2:250V~
- (5) Manufacture, s trade mark: **WMEC**
- (6) Manufacturing date and serial number: 21124
- (7)Appoved Monogram :

VDE-ENEC approval mark:	D E
CQC approval mark :	CQC
CSA approval mark :	SF)
UL approval mark :	22
ENEC approval mark :	10
KC approval mark :	C

Marking ex.

5. Rating and Characteristics

Part Number	Temp. Char.	Capacitance (pF)	Doby Dia. D (mm)	Body Thicknes T (mm)	Lead Spacing F (mm)	Lead Dia. d (mm)	Lead Package Long Bulk)	Lead Package Short Bulk)	Lead Package Taping
HMS100000	SL	10 \pm 5% or \pm 10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMS150000	SL	15 \pm 5% or \pm 10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMS220000	SL	22 $\pm 5\%$ or $\pm 10\%$	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMS330000	SL	33 \pm 5% or \pm 10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMS470000	SL	47 \pm 5% or \pm 10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMS680000	SL	68 \pm 5% or \pm 10%	9.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB101K	B/Y5P	100 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB151K 🗆 🗆 🗆	B/Y5P	150 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB181K	B/Y5P	180 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB221K 🗆 🗆	B/Y5P	220 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB271K 🗆 🗆	B/Y5P	270 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB331K 🗆 🗆 🗆	B/Y5P	330 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB391K 🗆 🗆 🗆	B/Y5P	390 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB471K 🗆 🗆 🗆	B/Y5P	470 +10,-10%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB561K 🗆 🗆 🗆	B/Y5P	560 +10,-10%	9.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB681K 🗆 🗆 🗆	B/Y5P	680 +10,-10%	10.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB821K 🗆 🗆 🗆	B/Y5P	820 +10,-10%	11.0	6.0	7.5	0.55	G3B	H3B	G3A
HMB102K 🗆 🗆 🗆	B/Y5P	1000 +10,-10%	12.0	6.0	7.5	0.55	G3B	H3B	G3A
HME102M 🗆 🗆	E/Y5U	1000 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HME122M 🗆 🗆	E/Y5U	1200 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HME152M 🗆 🗆	E/Y5U	1500 +20,-20%	9.0	6.0	7.5	0.55	G3B	H3B	G3A
HME182M 🗆 🗆 🗆	E/Y5U	1800 +20,-20%	9.0	6.0	7.5	0.55	G3B	H3B	G3A
HME222M 🗆 🗆 🗆	E/Y5U	2200 +20,-20%	10.0	6.0	7.5	0.55	G3B	H3B	G3A
HME272M 🗆 🗆 🗆	E/Y5U	2700 +20,-20%	11.0	6.0	7.5	0.55	G3B	H3B	G3A
HME332M 🗆 🗆 🗆	E/Y5U	3300 +20,-20%	12.0	6.0	7.5	0.55	G3B	H3B	G3A
HME392M 🗆 🗆 🗆	E/Y5U	3900 +20,-20%	13.0	6.0	7.5	0.55	G3B	H3B	G3C
HME472M 🗆 🗆 🗆	E/Y5U	4700 +20,-20%	13.0	6.0	7.5	0.55	G3B	H3B	G3C
HMF102M 🗆 🗆	F/Y5V	1000 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF122M 🗆 🗆	F/Y5V	1200 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF152M 🗆 🗆 🗆	F/Y5V	1500 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF182M 🗆 🗆 🗆	F/Y5V	1800 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF222M 🗆 🗆 🗆	F/Y5V	2200 +20,-20%	8.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF272M 🗆 🗆 🗆	F/Y5V	2700 +20,-20%	9.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF332M 🗆 🗆 🗆	F/Y5V	3300 +20,-20%	10.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF392M 🗆 🗆	F/Y5V	3900 +20,-20%	11.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF472M 🗆 🗆 🗆	F/Y5V	4700 +20,-20%	11.0	6.0	7.5	0.55	G3B	H3B	G3A
HMF562M	F/Y5V	5600 +20,-20%	12.0	6.0	7.5	0.55	G3B	H3B	G3C
HMF682M 🗆 🗆 🗆	F/Y5V	6800 +20,-20%	14.0	6.0	7.5	0.55	G3B	H3B	G3C
HMF103M	F/Y5V	10000 +20,-20%	15.0	6.0	10.0	0.55	G4B	H4B	G4C

Type HM (IEC60384-14 Sub-class X1,Y2) Rating and Characteristics

①Circle is filled with one to tolerance code of Capactance..J= \pm 5%. K= \pm 10%.

@Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for appropriate code.

6. Specification and test method

- 6.1 Operating temperature range:-25°C to 125°C
- 6.2 Test and measurement shall be made at the standard condition, (Temperature 15 to 35°C, relative humidity 45 to 75% and atmospheric pressure 86-106 kPa), unless otherwise specified herein If doubt occurred on the value of measurement, and measurement was requested by customer capacitors shall be measured at the reference condition (Temperature 20±2°C, relative humidity 60 to 70% and atmospheric pressure 86-106 kPa), unless otherwise specified herein

6.3 Performance

No.		ltem	Specification	Testing Method
1	Appearance fro and Dimensions spe		No marked defect on appearance from and dimensions are within specified range.	 The capacitor shall be inspected by naked eyes for Visible evidence of defect. Dimensions shall be measured with slide calipers.
2	Marking		To be easily legible.	The capacitor shall be inspected by naked eyes
3	Capacitar	nce	Within specified tolerance.	
4	Dissipation Factor(D.F.)		$\begin{tabular}{ c c c c c c c } \hline \hline Char. & Specification \\ \hline \hline B,E & D.F \leqslant 2.5\% \\ \hline F & D.F \leqslant 5.0\% \\ \hline SL & Q \geqslant 400 + 20C (C < 30PF) \\ Q \geqslant 1000 & (C \geqslant 30PF) \\ \hline \end{tabular}$	The capacitance, dissipation factor shall be measured at $20\pm2^{\circ}$ with 1 ± 0.1 kHz.and AC1 ±0.1 V(r.m.s).
5	Insulation Resistance	ə(I.R.)	1 0000M Ωmin.	The insulation resistance shall be measured with DC500 \pm 50V within 60 \pm 5 s of charging.
		Between Lead Wires No failure.		The capacitor shall not be damage when AC2600V(r.m.s.) are applied between the lead wires for 60 s.
6	Dielectric Strength	Body Insulation	No failure.	First, the terminals of the capacitor shall be connected together. Then, as shown in Figure right, a metal foil shall be closely wrapped around the body of the capacitor to the distance of about 3 to 4 mm from each terminal.Then,the capacitor shall be inserted into a container filled with metal ballsof about 1 mm diameter. Finally, AC AC2600(r.m.s.) is applied for 60 s between the capacitor lead wires and metal balls.
7	Temperature Char. C Characteristics E V F V SL Temperature		Char. Capacitance Change B Within±10% E Within ±55% F Within ±80% SL +350~-1000ppm/°C Temperature characteristic guarantee is -25 to +85°C	The capacitance measurement shall be made at each step specified in Table 3. $\begin{array}{r c c c c c c c c c c c c c c c c c c c$
8	Solderability of Leads		Lead wire shall be soldered with uniformly coated on the axial direction over 3/ 40f the circumferential direction.	The lead wire of a capacitor shall be dipped into molten solder of $235\pm5^{\circ}$ C for 2 ± 0.5 s. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.

No.	lte	em	Specification	Testing Method		
		Appearance	No marked defect.			
9 Sol Effe		Capacitance Change	Within±10%	As in figure,the lead wires should be immersed solder of $350 \pm 10^{\circ}$ or $260 \pm 5^{\circ}$ up to 1.5 to 2.0mm from the root of terminal		
	Soldering Effect	I.R.	1000M Ω min.	for 3.5 ± 0.5 s $(10 \pm 1$ s for $260 \pm 5^{\circ}$ C). Pre-treatment: Capacitor should be stored at $85 \pm 2^{\circ}$ C for 1 h, then		
		Dielectric Strength	Pre Item 6.	 placed at *room condition for 24±2 h before initial measurements. Post-treatment: Capacitor should be stored for 1 to 2 h at *room condition. 		
		Appearance	No marked defect.			
		Capacitance	Within the specified tolerance.	The conceptor chould firmly be coldered to the supp		
				orting lead wire and vibrated at a frequency range of		
	Vibration		Char. Specification	10 to 55Hz ,1.5mm in total amplitude, with about a 1 1minute_rate of_vibration change from10Hz to 55Hz		
10	Resistance	D.F.	B,E D.F.<2.5%	and back to 10Hz.		
		Q	$\frac{F}{O} = \frac{D.F. \ge 5.0\%}{O \ge 400 + 20C^{*1} (C \le 30 \text{pE})}$	Apply for total of 6 hrs., 2 hrs each in 3 mutually perpendicular directions		
			$SL \qquad \begin{array}{c} Q \ge 1000 (C \ge 30 \text{pF}) \\ \hline Q \ge 1000 (C \ge 30 \text{pF}) \end{array}$			
		Appearance	No marked defect.			
		Capacitance	Char. Capacitance Change			
			B Within± 10%			
		Change	E,F Within± 15%			
			SL Within ± 5%	Set the capacitor for 500 \pm 12 h at 40 \pm 2°C in 90		
	Humidity		Char. Specification	to 95% relative humidity.		
11	(Under Steady		B,E D.F.≤5.0%	Post-treatment: Capacitor should be stored for 1 to 2 h at * ² room		
	State)	State) D.F.	F D.F.≤7.5%	condition.		
		Q	SL Q ≥275+5/2C*1 (C<30pF) Q≥350 (C≥30pF)			
		I.R.	3000M Ω min.			
		Dielectric Strength	Per Item 6.			
		Appearance	No marked defect.			
			Char. Capacitance Change			
		Capacitance	B Within± 10%			
		Change	$- E,F \qquad \text{Within} \pm 15\%$			
				-		
12	Humidity		Char. Specification	Apply the rated voltage for 500 ± 12 h at $40\pm2^{\circ}$,		
	Loading	D.F.	B,E D.F.≤5.0%	Post-treatment:		
		Q	F D.F.≤7.5%	Capacitor should be stored for 1 to 2 h at * ² room		
			SL Q ≥275+5/2C*1 (C<30pF) Q≥350 (C≥30pF)			
		I.R.	3000M Ω min.			
		Dielectric Strength	Per Item 6.			

*1 "C" expresses nominal capacitance value(pF). *2 "Room condition " …… Temperature; 15 to 35°C, Relative humidity; 45 to 75%, Atmospheric pressure: 86 to 106kPa

WANMING ELECTRONICS CO., LTD.

No.	Item		Specification	Testing Method		
		Appearance	No marked defect.	Impulse Voltage		
		Capacitance Change	Within \pm 20%	Each individual capacitor shall be subjected to a 5kV impulses for three times. The time between impulses should be not less than 10S.		
		I.R.	3000M Ω min.	After the capacitors are applied to life test.		
		Dielectric Strength	Per Item 6.	$\begin{array}{c} 1 & 1 & 1 & 2 \\ 9 & 1 & 1 & 2 \\ 9 & 1 & 1 & 2 \\ 9 & 1 & 1 & 2 \\ 9 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 & 5 \\ 1 & 1 & 2 & 1 & 5 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		
13	Life	Discharge Test(II)	Per Item 9.	Apply a voltage of table 4 for 1000 h at 105+2/0°C, and relative humidity of 50% max···· <table.4> Applied voltage AC425V(r.m.s.), Except that once each hour the voltage is increased to AC1000V(r.m.s.)for 0.1s.</table.4>		
14	Flame Test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	Post-treatment: Capacitor shall be stored for 1 to 2 h at *room condition. The capacitor shall be subjected to applied flame for 15 s and then removed for 15 s until 5 cycles.		
15	Tensile Robustness		Lead wire shall not cut off. Capacitor shall noit be broken.	As a figure, fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10 ± 1 s.		
	of terminat	Bending		Each lead wire shall be subjected to 5N weight and then a 90° bend, at the point of egress, in one direction, return to original position, and then a 90° bend in the opposite direction at the rate of one bend in 2 to 3 s.		
16	Passive Flo	ammability	The burning time shall not be exceeded the time 30 s. The tissue paper shall not ignite.	The capacitor under test shall be held in the flame in the position which best promotes burning. Each specimen shall only be exposed once to the flame. Time of exposure to flame: 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia.: 0.5±0.1mm Outside Dia.: 0.9mm max. Gas:Butance gas Purity 95% min.		

*1 "C " expresses nominal capacitance value(pF). * "Room condition " Temperature; 15 to 35°C, Relative humidity; 45 to 75%, Atmospheric pressure: 86 to 106kPa

No.	Item		Specification		Testing Method			
17	Active Flammability		The cheese-cloth shall not be on fire.		The capacitor shall be individually wrapped in at least one but not more than two complete layers of cheese-cloth.The capacitor shall be subjected to 20 discharges. The interval between successive discharges shall be 5 s. The UAC shall be maintained for 2 min after the last discharge. $\int_{Tr} \frac{F}{S2} \frac{L1}{UAC} \frac{L2}{L3} \frac{R}{L4} \frac{C1}{UT} \frac{C1}{S2} \frac{C1}{UAC} \frac{C2}{L3} \frac{C3}{L4} \frac{C1}{UT} \frac{C1}{S2} \frac{C1}{UAC} \frac{C1}{L3} \frac{L4}{L4} \frac{C1}{UT} \frac{C1}{S2} \frac{C1}{UAC} \frac{C1}{L3} \frac{C2}{L3} \frac{C1}{L3} \frac{C1}{L4} \frac{C1}{UT} \frac{C1}{L3} \frac{C1}{L3} \frac{C1}{L3} \frac{C1}{L3} \frac{C1}{L3} \frac{C1}{L4} \frac{C1}{UT} \frac{C1}{UT} \frac{C1}{L3} \frac{C1}$			
18	Temperature and Immersion Cycle	Appearance	No marl	ked defect.	The capacitor shall be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.			
		Capacitance Change	Char.	Capacitance Change <temperature cycle=""></temperature>				e>
			B Wilhin ± 10% Step Temperature		Ire(°C)	Time		
			E		1	-25+0/	-3	30 min
			SL Within±5% 2 Room temp.		mp.	3 min		
		D.F.	$\begin{tabular}{ c c c c c c c } \hline \hline Char. & Specification \\ \hline B,E & D.F \leqslant 5.0\% \\ \hline SL & Q \geqslant 275 + 2.5C (C < 30PF) \\ Q \geqslant 350 & (C \geqslant 30PF) \\ \hline $		3	+125+3	8/-0	30 min
					4	Room te	mp.	3 min
					Cycle time:5 cycle			
		I.R.	3000M (² min.	Step	Temperature(°C)	Time	immersion water
		Dielectric Strength	Per Item 6.		1	+65+5/-0	15 min	Clean water
					2	Room temp.	15 min	Salt water
					Pre-treatment: Capacitor shall be stored at 85±2°C for 1 h, thenplaced at *room condition for 24±2 h. Post-treatment: Capacitor shall be stored for 24±2 h at *room condition.			

*1 "C " expresses nominal capacitance value(pF).

* "Room condition " Temperature; 15 to 35°C, Relative humidity; 45 to 75%, Atmospheric pressure: 86 to 106kPa

7. Characteristics Data (Typiccal Example)

7.1 Capacitance-Temperature Characteristics

Char:F (Y5V)

7.2 Impedance vs. Frequency Characteristics

7.3 Leakage Current Characteristics

8.1 TAPING SPECIFICATION

8.2 TAPING SPECIFICATION

9 PACKAGING STYLES

9.1 Taping: Reel Packaging

9.2 Taping:Ammo Packaging

9.3 Bulk

Polyethylene Bag

- 10 : Packaging Quantity: (Bulk) 500PCS
- 11 : Label and Transport

Capacitors shall be packaged prior to shipment so as to prevent damage during transportation and storage.

Shipping carton contains the following information on the label

a) Our Part No.

b) Quantity

c) Lot No.

D) Manufacturer's Name.

12: Notification before the modification

We, Il previously notify the modified place of manufacture, Manufactured articles and materials.

The operating conditions for the guarantee of this product are as shown in the specification.

Please note the Wanming Electronics co.,Ltd. Shall not be responsible

for a failure and/or abnormality which are caused by use under

the conditions other than the aforesaid operating conditions.